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The purpose of the present article is the study of the effect of the gravity field on an initially
stressed micropolar thermoelastic medium with microtemperatures. The analytical method
used to obtain the formula of the physical quantities is the normal mode analysis. The
comparisons are established graphically in the presence and the absence of gravity, initial
stress and micropolar thermoelasticity. The main conclusions state that the gravity, initial
stress and the micropolar thermoelasticity are effective physical operators on the variation
of the physical quantities. The microtemperatures are very useful theory in the field of
geophysics and earthquake engineering.
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1. Introduction

The theory of elastic micropolar materials was introduced by Eringen (1966). The theory of conti-
nuum micropolar mechanics takes into consideration the microstructure of materials. Description
of the micropolar materials is useful for fibrous, lattice or, in general, materials having micro-
structural construction having in each point extra rotational degrees of freedom independent of
translation. The material, however, can transmit couple stress. Smith (1967) studied wave propa-
gation in micropolar elastic solids. Parfitt and Eringen (1971) investigated reflection of plane wa-
ves from a flat boundary of a micropolar elastic half-space. Ariman (1972) also studied wave pro-
pagation in a micropolar elastic half-space solid. Eringen (1999) presented the microcontinuum
field theory. Kumar and Ailawalia (2005) studied the response of a micropolar cubic crystal due to
various sources. Kumar and Gupta (2010) studied propagation of waves in a transversely isotro-
pic micropolar generalized thermoelastic half-space. Abbas and Kumar (2013) studied deforma-
tion due to a thermal source in micropolar thermoelastic media with the two-temperature effect.
Recently, Othman et al. (2014) established the effect of rotation on a micropolar thermo-elastic
solid with two temperatures. Abouelregal and Zenkour (2015) studied a thermoelastic problem of
an axially moving micro beam subjected to an external transverse excitation. The concept of mi-
crotemperatures means that microelements of a thermoelastic body have different temperatures
and depend homogeneously on microcoordinates of the microelements, which are based on the
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microstructure of the continuum. Grot (1969) established the thermodynamic theory of elastic
materials with inner structures, in which microdeformations and particles possess microtempe-
ratures. Eringen and Kafadar (1976) presented the basis for the microelements with microtem-
peratures. Riha (1979) presented a study of heat conduction in materials with inner structures.
Iesan and Quintanilla (2000) constructed the linear theory of thermoelasticity for materials with
inner structure whose particles, in addition to the classical displacement and temperature fields,
possess microtemperatures. Iesan (2001, 2004) presented the mathematical model of theory of
micromorphic elastic solids with microtemperatures, in which microelements possess microtem-
peratures and can stretch and contract independently of their translations. Casas and Quintanilla
(2005) studied exponential stability in thermoelasticity with microtemperatures. Scalia and Sva-
nadze (2006) discussed solutions of the theory of thermoelasticity with microtemperatures. Iesan
(2006, 2007) presented a study of thermoelastic bodies with a microstructure and microtempera-
tures.

The effect of gravity on wave propagation in an elastic medium was first considered by Brom-
wich (1898) who treated the force of gravity as a type of a body force. Love (1965) extended
the work of Bromwich investigating the influence of gravity on superficial waves and showed
that the Rayleigh wave velocity is affected by the gravitational field. Sezawa (1927) studied
dispersion of elastic waves propagating on curved surfaces. Othman et al. (2013a,b) investiga-
ted two models on the effect of the gravitational field on thermoelastic solids. The presence of
initial stresses in solid materials has a substantial effect on their subsequent response to applied
loads that is very different from the corresponding response in the absence of initial stresses.
In geophysics, as an example, high stress developed below the Earth’s surface due to gravi-
ty has a strong influence on the propagation speed of elastic waves. While in soft biological
tissues initial (or residual), stresses in artery walls ensure that the circumferential stress distri-
bution through thickness of the artery wall is close to uniform at typical physiological blood
pressures. Initial stresses may arise, for example, from applying loads, as in the case of gravity,
processes of growth and development in living tissue or, in the case of engineering components,
from the manufacturing process. Ames and Straughan (1999) derived continuous dependence
results for initially pre-stressed thermoelastic bodies. Montanaro (1999) investigated isotropic
linear thermoelasticity with hydrostatic initial stress. Wang and Slattery (2002) formulated
thermoelastic equations without energy dissipation for initially stressed bodies. Iesan (2008)
presented a theory of Cosserat thermoelastic solids with initial stresses. Recently, Othman et al.
(2015) discussed the effect of initial stress on a thermoelastic rotating medium with laser pulse
heating.

This investigation studies the 2D problem of linear, isotropic, homogeneous initially stressed
micropolar thermoelastic solid influenced by the gravity field. The application of the present
model cannot be ignored in geophysics and earthquake engineering due to the importance of
the microtemperature properties. The normal mode analysis is the analytical method used to
obtain the solutions of the considered physical quantities which are graphically represented in
the absence and presence of the studied physical effects.

2. Basic equations

Consider the linear theory of thermodynamics for isotropic elastic materials with inner structure.
According to Eringen (1999), Isean (2007) and Montanaro (1999), the field equations and the
constitutive relations for a linear, homogeneous, isotropic initially stressed micropolar thermo-
elastic solid with microtemperatures without body forces, body couples, heat sources and first
heat source moment, can be considered as
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where λ and µ are Lamé constants, α, β, γ, and k∗ are micropolar constants, γ1 = (3λ+2µ+k
∗)αt,

while αt is the linear thermal expansion coefficient, ρ is density, Ce – specific heat, k – thermal
conductivity, ui – displacement vector, T – absolute temperature, T0 – reference temperature
chosen so that |(T −T0)/T0| ≪ 1, φj is the microrotation vector, σij are components of stresses,
eij are components of strains, δij is the Kronecker delta, εijr is the permutation symbol, p –
pressure, mij are couple stresses, J is microinertia, wi – microtemperature vector, µ1, b, ki
(i = 1, 2, . . . , 6) are constitutive coefficients, qi is heat flux moment, qij – first heat flux moment
and Qi is the mean heat flux vector.

3. Formulation and solution of the problem

Consider an isotropic, linear, homogeneous, initially stressed micropolar thermoelastic solid with
microtemperatures. Consider also a half-space (y  0) and the rectangular Cartesian coordinate
system (x, y, z) originated in the surface z = 0. For a two-dimensional problem, assume the
dynamic displacement vector as ui = (u, v, 0). The microrotation vector φj will be φj = (0, 0, φ3),
consequently the microtemperature vector wi willbe wi = (w1, w2, 0). All quantities will be a
function of the time variable t and coordinates x and y. In the equations, comma denotes
derivatives with respect to coordinates system.
Equations (2.1) under the effect of the gravitational field can be stated as
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where g is the acceleration of gravity and e is dilatation.
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Define non-dimensional variables by expressions
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Assuming the potential functions ψ1(x, y, t), ψ2(x, y, t), q1(x, y, t) and q2(x, y, t) in dimensionless
form, we have
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To get the solution for the physical quantities, consider it in form of the normal mode as
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Apply equations (3.2)-(3.4) into equations (3.1) and drop the prime to obtain
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where D = d/dy. All the constants are given in Appendix B.
Eliminating ψ∗1, ψ
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where λn (n = 1, 2, . . . , 6) are constants.
Equation (3.6) can be factored as
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where S2n (n = 1, 2, . . . , 6) are the roots of the characteristic equation of (3.7).
The general solution to equation (3.7) bounded at y →∞ is given by
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Here Rn (n = 1, 2, . . . , 6) are some coefficients. The other field quantities are given in Appen-
dix A.
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4. Applications

Consider the following non-dimensional boundary conditions to determine the coefficients Rn
(n = 1, 2, . . . , 6) and neglect the positive exponentials to avoid unbounded solutions at infinity.
The surface of the medium satisfies the following conditions y = 0:

• The mechanical boundary conditions are

– normal stress condition (mechanically stressed by the constant force p1), so that

σyy = −p1ei(ax−ξt) − p (4.1)

– tangential stress condition (stress free)

σxy = 0 (4.2)

• Condition of couple stress (couple stress is constant in the y-direction) implying that

mxz = 0 (4.3)

• Thermal condition (half-space subjected to thermal shock with constant temperature p2
applied to the boundary) leading to

T = p2e
i(ax−ξt) (4.4)

• Normal and tangential heat flux moments are free, so that

qyy = qxy = 0 (4.5)

Substituting the expressions of the considered quantities into boundary conditions (4.1)-(4.5),
one obtains equations satisfied by the coefficients Rn (n = 1, 2, . . . , 6). Applying the inverse
of matrix method to the raised system of equations, one finds values of the coefficients Rn
(n = 1, 2, . . . , 6) as
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(4.6)

Thus, we obtain expressions for the physical quantities of the plate surface.

5. Particular cases

In the present study, we consider the following particular cases:

(i) Absence of gravity by taking g = 0 in equations (4.1) and (4.2).

(ii) Non-initial stress effect by taking p = 0 in equation (4.5).

(iii) Absence of micropolar by taking α, β, γ, k∗ and j = 0 in equations (4.1)-(4.5).
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6. Numerical results and discussion

In order to illustrate the obtained theoretical results in the preceding Section, according to Erin-
gen (1984), the magnesium crystal-like thermoelastic micropolar material has been chosen for
the purpose of calculations. The used parameters are given in SI units. The constants are ta-
ken as λ = 9.4 · 1010 N/m2, µ = 4 · 1010 N/m2, k = 1.7 · 102N/(sK), ρ = 1.74 · 103 kg/m3,
αt = 7.4033 · 10−7 /K, Ce = 1.04 · 103 J/(kgK), k∗ = 1 · 1010 N/m2, γ = 7.779 · 10−8N,
J = 2 · 10−20m2, T0 = 298K, k1 = 0.0035 N/s, k2 = 0.0045N/s, k3 = 0.0055N/(sK),
k4 = 0.065N/(sm

2), k5 = 0.076N/(sm
2), k6 = 0.096N/(sm

2), µ1 = 0.0085N, b = 0.15 · 10−9N,
p1 = 1N/m

2, p2 = 2K, a = 1.5m, t = 0.5 s, ξ = η+ iη1, η = 0.9 rad/s, η1 = 2.9 rad/s, x = 0.5m,
0 ¬ y ¬ 6m.
The variation of real parts of each displacement v, microtemperature vector w2, tempera-

ture T , stress σxy, couple stress mxz, microrotation φ3 and the first heat flux moment qxy are
obtained and represented by the distance y.

Figures 1-3 represent the behavior of these physical quantities against the distance y in 2D
when p = 5N/m and g = 9.8m/s2. Figures 4a and 4b show the behavior of these physical
quantities against the distance y in 2D for g = 9.8m/s2 in the case of p = 5N/m. Figures 5a
and 5b depict the variation of these physical quantities against the distance y in 2D in the case
of presence and absence of micropolar thermoelasticity when the gravity and the initial stress
are present.

Fig. 1. Variation of displacement v (a) and of microtemperature vector w2 (b) against y

Fig. 2. Variation of temperature T (a) and of stress σxy (b) against y
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Fig. 3. Variation of microrotation vector φ3 (a) and of the first heat flux moment qxy (b) against y

Figure 1a shows that the variation of the displacement component v increases with an increase
in gravity for y  0. Figure 1b clarifies the variation of the microtemperature vector w2 which
decreases with an increase in gravity for y  0. It is clear from Fig. 2a that the variation of
temperature T decreases with an increase in gravity for y  0, but for very small values it seems
to be identical. This means that the effect of gravity has a small influence on the variation of
temperature. Figure 2b depicts the variation of the shearing stress σxy which increases with
an increase in gravity for y  0. Figure 3a explains that the variation of the microrotation
vector φ3 increases in the interval 0 ¬ y ¬ 0.5, while it decreases in the interval 0.5 ¬ y ¬ 6,
with an increase in gravity. Figure 3b determines the variation of the heat flux moment qxy which
increases at the intervals 0 ¬ y ¬ 0.6 and 1 ¬ y ¬ 6, but decreases at the interval 0.6 ¬ y ¬ 1
with an increase in gravity. The gravity has an effective role in the variation of all physical
quantities of the problem. One can notice a change in the variation of the physical quantities
while gravity is present or absent.

Figure 4a shows that the variation of the displacement component v decreases in the intervals
0 ¬ y ¬ 0.4, 1 ¬ y ¬ 1.8 and 2.8 ¬ y ¬ 6, while it increases in the intervals 0.4 ¬ y ¬ 1 and
1.8 ¬ y ¬ 2.8 with an increase in the initial stress. Figure 4b clarifies the variation of the
microtemperature vector w2 which increases with an increase in the initial stress for y  0. It is
clear that all functions are continuous and all the curves converge to zero. The initial stress has
a significant role in the variation of all physical quantities in the problem. This can be deduced
from changing of the manner of variation of the physical quantities while the effect of the initial
stress is present or absent.

Fig. 4. Variation of displacement v (a) and of microtemperature vector w2 (b) against y
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Figure 5a shows that the variation of the displacement component v increases in the intervals
0 ¬ y ¬ 2 and 4.4 ¬ y ¬ 6, while it decreases in the interval 2 ¬ y ¬ 4.4 with an increase
in the micropolar thermoelasticity. It is clear from Fig. 5b that the variation of temperature T
decreases with an increase of the micropolar thermoelasticity for y  0 in observable behavior.
It is clear that all functions are continuous and all the curves converge to zero. The micropolar
thermoelasticity plays an important role in the variation of all physical quantities in the problem.
The micropolar thermoelasticity is a very important property in thermoelastic materials with a
microstructure.

Fig. 5. Variation of displacement v (a) and of temperature T (b) against y with and without micropolar

The 3D curves of the quantities v and w1 are shown in Figs. 6a and 6b for g = 9.8m/s
2

and p = 5N/m with the presence of the micropolar thermoelasticity at t = 0.5 s. These figures
depict the dependence of these quantities on the distances x and y while they are moving during
wave propagation.

Fig. 6. Variation of displacement v (a) and of microtemperature vector w1 (b) versus distances x and y

7. Conclusion

From the above analytical solutions, we conclude that:
1. Gravity and initial stress are effective physical factors having an important role in the
variation of the physical quantities.

2. The micropolar thermoelasticity is an important property. The presence or the absence of
this property is an observable effect in the variation of the considered physical quantities,
for example in the variation of temperature.

3. The microtemperature is a very useful theory in the field of geophysics and earthquake
engineering and for seismologists working in the field of mining tremors and drilling into
the earth’s crust.
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4. Values of all physical quantities converge to zero with an increase in the distance y, and
all functions are continuous.

Appendix A
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c8 =

jρc20
γ
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c9 =
k4 + k5
k6

c10 =
µ1γ1T0
ρω∗1k6

c11 =
k2c
2
0

k6ω∗21
c12 =

bc0
k6ω∗1

c13 =
k3T0c

2
0

k6ω∗21
c14 =

ρCec
2
0

kω∗1
c15 =

γ21T0
ρkω∗1

c16 =
k1
kT0

c17 =
λ

ρc20

c18 =
2µ+ k∗

ρc20
c19 =

µ+ p

2ρc20
c20 =

2(k∗ + µ)− p
2ρc20

c21 =
k∗

ρc20

c22 =
γω∗21
ρc40

c23 = −k4µω∗1 c24 = −(k5 + k6)µω∗1 c25 = −k5µω∗1

c26 = −k6µω∗1 l1 = N3 +N9 +N13 − c16N10 −N5N14
l2 = N3(N9 +N13 − c16N10) +N9N13 − c16N10a2 −N5N14(N9 + a2)
l3 = N3(N9N13 − c16N10a2)−N5N9N14a2 l4 = N4(N9 +N13 − c16N10)
l5 = N4(N9N13 − c16N10a2) G1n = (ia− SnA1n) G2n = −(Sn + iaA1n)
G3n = iaA3n − SnA4n G5n = c17(iaG1n − SnG2n) + iac18G1n −A5n − p
G4n = −(SnA3n + iaA4n) G6n = c17(iaG1n − SnG2n)− Snc18G2n −A5n − p
G7n = −c19SnG1n + iac20G2n − c21A2n G8n = −c22SnA2n
G9n = iac22A2n G10n = c23(iaG3n − SnG4n) + iac24G3n
G11n = c23(iaG3n − SnG4n)− Snc24G4n G7n = −c15SnG3n + iac26G4n
n = 1, 2, . . . , 6
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